To solve this problem, let's break it down step-by-step:
Step 1: Calculate the Number of Triangles
To form a triangle, we need to select 3 points out of the 8 points on the circumference. The total number of triangles is given by the combination formula:
![image](https://lh7-rt.googleusercontent.com/docsz/AD_4nXerkr8yAIzQprGWCY7BBKHhIoY4rOzpK3nuOY9M4sGlqEmrqw63LHnyrLug0tdLgzMhdm_hhkv_o-NmrYdn34thdE5jntLMw8fxCglTqnHiX6HwqP60qmSy8WyLlAfHZKjP9b_l?key=AckExfA3kCw_XglyosGH8_hL)
Step 2: Calculate the Number of Quadrilaterals
To form a quadrilateral, we need to select 4 points out of the 8 points on the circumference. The total number of quadrilaterals is:
![image](https://lh7-rt.googleusercontent.com/docsz/AD_4nXfJ43TrG0Ww6Qmx3hLFXsjbXfgZjP4g33MbbmWKYQruDmUZ7Si8QtRZmeh5XvA9O4nbHcCNZUd89LcZjho5qTHDy18F_u0RdbsaTjy8AwJLj6ZKVjuRUQAp9XsVYJM1Q-zeskS-Zw?key=AckExfA3kCw_XglyosGH8_hL)
Step 3: Difference Between Quadrilaterals and Triangles
Now, we calculate the difference between the number of quadrilaterals and triangles:
Difference=70−56=14
Final Answer:
(1) 14